Top of page
Technology

Harvard students develop wearable navigation robot for people with vision disabilities

a user with guide dog testing the wearable device
This mock-up shows how a user would wear the Foresight navigational aid. Photo: Foresight

Harvard University students developed a wearable robotic device for people who are blind or have low vision to navigate more easily.

Students has launched a startup called Foresight, a wearable navigation aid for people who are blind that uses cutting-edge soft robotics and computer vision technology. Foresight connects to a user’s smartphone camera, which is worn around the neck. It detects objects nearby and this information triggers soft textile units on the body that inflate to provide haptic feedback as objects approach and pass.

“Being diagnosed with a permanent eyesight problem means getting used to a whole new way of navigating the world,” said Ed Bayes, a student in Harvard’s MDE program.

“We spoke to people living with visual impairment to understand their needs and built around that.”

The startup was born out of the joint SEAS/GSD course Nano Micro Macro, in which teams of students are challenged to apply emerging technology from Harvard labs. Foresight was inspired by students’ experience with blind family members who spoke of the stigma surrounding the use of assistive devices.

“Importantly, Foresight is discreet, affordable, and intuitive. It provides an extra layer of comfort to help people move around more confidently,” Bayes added.

“Most wearable navigation aids rely on vibrating motors, which can be uncomfortable and bothersome to users,” said Anirban Ghosh, M.D.E. ’21. “Soft actuators are more comfortable and can provide the same tactile information.”

With Foresight, the distance between an object and the user correlates with the amount of pressure they feel on their body from the actuators.

“The varied inflation of multiple actuators represents the angular differences of where those objects are in space,” said Nick Collins,

“We want to know if the information we are giving them actually translates into a user-friendly interpretation of objects in the space around them,” Collins said. “This is another tool in their arsenal. Our desire isn’t necessarily to get rid of any current tools, but to provide another, more robust sensory experience.”

The team is inspired by the opportunity to use emerging technology to provide an implementable solution that could help many people.

You might also like

person holding Blindshell Classic 2 person holding Blindshell Classic 2

Vodacom launches accessible smartphone for blind people

Vodacom Group hosted its second Disability and Accessibility Conference on…

A student demonstrates how a robotic exoskeleton allows for strong movement A student demonstrates how a robotic exoskeleton allows for strong movement

NAU unveils wearable robots to aid walking

Imagine a future in which people with disabilities can walk…

Mark and Mabel Ramos Mark and Mabel Ramos

Father develops software to improve skills therapy

Mabel Ramos’s favorite song is “Ghostbusters” by Ray Parker Junior.…

The 4D programmable and low-voltage haptic interface based on elastomer actuators. (A) (i) Concept of a flexible haptic interface based on the low-voltage-driven elastomer actuators for human–machine interaction. (ii) Structure of the actuator prototype, including a multilayer elastomer acting as a stiffness regulator, a charged electret film, 2 electrode layers, and an insulating layer, and the schematic illustration of the actuation mechanism. (B) Performance comparison across 6 dimensions with other reported haptic interfaces. (C) Haptic interface (i) integrated with the skin on a human arm for emotional Braille application and (ii) incorporated into a cane for blind users to facilitate multidirectional haptic navigation. (D) Overview of 4D haptic modulation principles for enhancing emotional and navigational haptic feedback. The 4D programmable and low-voltage haptic interface based on elastomer actuators. (A) (i) Concept of a flexible haptic interface based on the low-voltage-driven elastomer actuators for human–machine interaction. (ii) Structure of the actuator prototype, including a multilayer elastomer acting as a stiffness regulator, a charged electret film, 2 electrode layers, and an insulating layer, and the schematic illustration of the actuation mechanism. (B) Performance comparison across 6 dimensions with other reported haptic interfaces. (C) Haptic interface (i) integrated with the skin on a human arm for emotional Braille application and (ii) incorporated into a cane for blind users to facilitate multidirectional haptic navigation. (D) Overview of 4D haptic modulation principles for enhancing emotional and navigational haptic feedback.

Haptic tech boosts cognitive support for persons with disabilities

The advancements in tactile perception and feedback technologies have propelled…