Top of page
Technology

Robotic device to assists people with spinal cord injury developed

robot hand

A Columbia Engineering team has invented a robotic device – the Trunk-Support Trainer (TruST) – that can be used to assist and train people with Spinal cord injuries to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

The study, published today in Spinal Cord Series and Cases, is the first to measure and define the sitting workspace of patients with SCI based on their active trunk control.

Spinal cord injuries (SCI) can cause devastating damage, including loss of mobility and sensation. Every year, there are an estimated 17,000 new SCIs in the US alone, a rate higher than in most regions of the world. In addition, the rate of SCIs in people 65-years or older is expected to rise in the US, from 13.0% in 2010 to 16.1% by 2020. Data also shows a high survival rate for these patients, who need to function in everyday life but find sitting to be a major challenge.

“We designed TruST for people with SCIs who are typically wheelchair users,” says Sunil Agrawal, the project’s PI and professor of mechanical engineering and of rehabilitation and regenerative medicine. “We found that TruST not only prevents patients from falling, but also maximizes trunk movements beyond patients’ postural control, or balance limits.”

TruST is a motorized-cable driven belt placed on the user’s torso to determine the postural control limits and sitting workspace area in people with SCI. It delivers forces on the torso when the user performs upper body movements beyond the postural stability limits while sitting.

You might also like

Icon Graphic Interface showing computer, machine thinking and AI Artificial Intelligence of Digital Robotic Devices Icon Graphic Interface showing computer, machine thinking and AI Artificial Intelligence of Digital Robotic Devices

Canada releases first standard on accessible and equitable AI

Accessibility Standards Canada announced on December 3 the publication of the CAN-ASC-6.2 – Accessible…

A young girl sits in a park, working on her laptop, surrounded by nature. Her colorful outfit and appearance reflect her energy and optimism. With a prosthetic leg, she proves that disability is no barrier to connecting with nature and embracing digitalization. This photo captures the harmony of technology, youth, and the outdoors—a powerful image of resilience and progress. A young girl sits in a park, working on her laptop, surrounded by nature. Her colorful outfit and appearance reflect her energy and optimism. With a prosthetic leg, she proves that disability is no barrier to connecting with nature and embracing digitalization. This photo captures the harmony of technology, youth, and the outdoors—a powerful image of resilience and progress.

Azerbaijan’s digital shift in disability assessments and payments

For years, people with disabilities in Azerbaijan carried a double…

Group Photo Group Photo

WHO launches training to expand access to assistive technology in Azerbaijan

The World Health Organization (WHO) Country Office in Azerbaijan, together…

Report calls for urgent action on neurotechnology and human rights

The Australian Human Rights Commission has released its report, ‘Peace…