Top of page
Technology

Scientists develop new implant to aid blind people

Scientist testing
The new technology has been successfully tested in rabbits, and scientists are hopeful that it will bring similar results in humans as well. (Photo: EPFL)

Scientists from EPFL in Switzerland and Scuola Superiore Sant’Anna in Italy are developing technology for the blind that bypasses the eyeball entirely and sends messages to the brain. They do this by stimulating the optic nerve with a new type of intraneural electrode called OpticSELINE.

“We believe that intraneural stimulation can be a valuable solution for several neuroprosthetic devices for sensory and motor function restoration. The translational potentials of this approach are indeed extremely promising”, explains Silvestro Micera, EPFL’s Bertarelli Foundation Chair in Translational Neuroengineering, and Professor of Bioelectronics at Scuola Superiore Sant’Anna, who continues to innovate in hand prosthetics for amputees using intraneural electrodes.

Blindness affects an estimated 39 million people in the world. Many factors can induce blindness, like genetics, retinal detachment, trauma, stroke in the visual cortex, glaucoma, cataract, inflammation or infection. Some blindness is temporary and can be treated medically. How do you help someone who is permanently blind?

The new technology has been successfully tested in rabbits, they report their results in Nature Biomedical Engineering, and scientists are hopeful that it will bring similar results in humans as well. One of the key advantages of this approach is that it can be used on a much larger range of people.

You might also like

A womn in a wheelchair using a computer A womn in a wheelchair using a computer

How technology advances accessibility for people with disabilities

In today’s fast-evolving technological setting, the impact of technological progress…

Sign Language Sign Language

How AI can help map sign languages

Like spoken languages, sign languages evolve organically and do not…

kid infront of computer screen kid infront of computer screen

UNMC’s Munroe-Meyer Institute introduces autism diagnostic tool

The UNMC Munroe-Meyer Institute is piloting a new diagnostic tool…

Hussein Alawieh, a graduate student in Dr. José del R. Millán's lab, wears a cap packed with electrodes that is hooked up to a computer. The electrodes gather data by measuring electrical signals from the brain, and the decoder interprets that information and translates it into game action. Hussein Alawieh, a graduate student in Dr. José del R. Millán's lab, wears a cap packed with electrodes that is hooked up to a computer. The electrodes gather data by measuring electrical signals from the brain, and the decoder interprets that information and translates it into game action.

Universal brain-computer interface enables thought-controlled gaming

Imagine playing a racing game like Mario Kart, using only…