Top of page
Technology

Brain-controlled prosthetic hand to become reality

Brain-controlled prosthetic hand
Photo: DeTOP

Imagine a patient controlling the movement of his or her prosthetic limb simply by thinking of commands. It may sound like science fiction but will soon become reality thanks to the EU-funded DeTOP (Dexterous Transradial Osseointegrated Prosthesis with neural control and sensory feedback) project. A consortium of engineers, neuroscientists and clinicians has made great strides in further developing the technology behind more natural and functional prostheses.

The team uses an osseointegrated human-machine gateway (OHMG) to develop a physical link between a person and a robotic prosthesis. A patient in Sweden was the first recipient of titanium implants with the OHMG system. The OHMG is directly fitted to bones in the user’s arms, from which electrodes to nerves and muscle extract signals to control a robotic hand and provide tactile sensations. According to a news item by ‘News Medical’, the patient will begin using a training prosthesis in the next few months before being fitted with the new artificial hand developed by DeTOP partners. This will help the team evaluate the entire system, including the implanted interface, electronics, as well as wrist and hand functions. Motor coordination and grip strength will also be assessed during the tests.

For more information, visit the DeTOP project website

You might also like

A womn in a wheelchair using a computer A womn in a wheelchair using a computer

How technology advances accessibility for people with disabilities

In today’s fast-evolving technological setting, the impact of technological progress…

Sign Language Sign Language

How AI can help map sign languages

Like spoken languages, sign languages evolve organically and do not…

kid infront of computer screen kid infront of computer screen

UNMC’s Munroe-Meyer Institute introduces autism diagnostic tool

The UNMC Munroe-Meyer Institute is piloting a new diagnostic tool…

Hussein Alawieh, a graduate student in Dr. José del R. Millán's lab, wears a cap packed with electrodes that is hooked up to a computer. The electrodes gather data by measuring electrical signals from the brain, and the decoder interprets that information and translates it into game action. Hussein Alawieh, a graduate student in Dr. José del R. Millán's lab, wears a cap packed with electrodes that is hooked up to a computer. The electrodes gather data by measuring electrical signals from the brain, and the decoder interprets that information and translates it into game action.

Universal brain-computer interface enables thought-controlled gaming

Imagine playing a racing game like Mario Kart, using only…