Top of page
Technology

Robot fingers hold promise for assistive living, prosthetics

Simon Fraser University (SFU) mechatronics graduate has designed 3D-printed humanoid robot fingers that mimic the strength and tenderness of a human hand. For people with mobility disabilities, robots equipped with these flexible fingers could prove important companions or tools for independent living.

“In this field, called soft robotics, we take inspiration from nature to create materials for robots that can safely interact with humans,” says Manpreet Kaur, who developed the 3D-printed humanoid fingers as part of her recent PhD thesis, supervised by mechatronic systems engineering professor Woo Soo Kim. Kaur graduates this month, after successfully defended her thesis in April.

Today’s commercially available robots are often made with hard materials that, when used improperly, could scratch or impale their human operators, or are simply uncomfortable to interact with. Conversely, many of the materials that make up so-called soft robots—such as inflatable or jelly-like robots—may be too soft to carry loads and can be easily punctured with regular use and human interaction.

“We need something that takes advantage of the flexibility and gentleness of those soft materials but is also strong and durable enough to complete different tasks,” Kaur explains.

You might also like

person holding Blindshell Classic 2 person holding Blindshell Classic 2

Vodacom launches accessible smartphone for blind people

Vodacom Group hosted its second Disability and Accessibility Conference on…

A student demonstrates how a robotic exoskeleton allows for strong movement A student demonstrates how a robotic exoskeleton allows for strong movement

NAU unveils wearable robots to aid walking

Imagine a future in which people with disabilities can walk…

Mark and Mabel Ramos Mark and Mabel Ramos

Father develops software to improve skills therapy

Mabel Ramos’s favorite song is “Ghostbusters” by Ray Parker Junior.…

The 4D programmable and low-voltage haptic interface based on elastomer actuators. (A) (i) Concept of a flexible haptic interface based on the low-voltage-driven elastomer actuators for human–machine interaction. (ii) Structure of the actuator prototype, including a multilayer elastomer acting as a stiffness regulator, a charged electret film, 2 electrode layers, and an insulating layer, and the schematic illustration of the actuation mechanism. (B) Performance comparison across 6 dimensions with other reported haptic interfaces. (C) Haptic interface (i) integrated with the skin on a human arm for emotional Braille application and (ii) incorporated into a cane for blind users to facilitate multidirectional haptic navigation. (D) Overview of 4D haptic modulation principles for enhancing emotional and navigational haptic feedback. The 4D programmable and low-voltage haptic interface based on elastomer actuators. (A) (i) Concept of a flexible haptic interface based on the low-voltage-driven elastomer actuators for human–machine interaction. (ii) Structure of the actuator prototype, including a multilayer elastomer acting as a stiffness regulator, a charged electret film, 2 electrode layers, and an insulating layer, and the schematic illustration of the actuation mechanism. (B) Performance comparison across 6 dimensions with other reported haptic interfaces. (C) Haptic interface (i) integrated with the skin on a human arm for emotional Braille application and (ii) incorporated into a cane for blind users to facilitate multidirectional haptic navigation. (D) Overview of 4D haptic modulation principles for enhancing emotional and navigational haptic feedback.

Haptic tech boosts cognitive support for persons with disabilities

The advancements in tactile perception and feedback technologies have propelled…