
Regular exercise may reduce the risk of acute respiratory distress syndrome, a major cause of death in patients with the COVID-19 virus, a top exercise researcher reports. He is urging people to exercise based on his findings, which also suggest a potential treatment approach.
A review by Zhen Yan of the University of Virginia School of Medicine showed that medical research findings “strongly support” the possibility that exercise can prevent or at least reduce the severity of ARDS, which affects between 3% and 17% of all patients with COVID-19. Based on available information, the federal Centers for Disease Control and Prevention estimates 20% to 42% of patients hospitalized for COVID-19 will develop ARDS. The range for patients admitted to intensive care is estimated at 67% to 85%.
Research conducted prior to the pandemic suggested that approximately 45% of patients who develop severe ARDS will die.
“All you hear now is either social distancing or ventilator, as if all we can do is either avoid exposure or rely on a ventilator to survive if we get infected,” Yan said. “The flip side of the story is that approximately 80% of confirmed COVID-19 patients have mild symptoms with no need of respiratory support. The question is, ‘Why?’ Our findings about an endogenous antioxidant enzyme provide important clues and have intrigued us to develop a novel therapeutic for ARDS caused by COVID-19.”
Research suggests that even a single session of exercise increases production of the antioxidant, prompting Yan to urge people to find ways to exercise even while maintaining social distancing.
“We cannot live in isolation forever,” he said. “Regular exercise has far more health benefits than we know. The protection against this severe respiratory disease condition is just one of the many examples.”
Research has also shown that lab rats with chronic kidney disease had less kidney damage when treated with human EcSOD. The antioxidant is already being proposed as a potential therapeutic for diabetic retinopathy, a complication of diabetes that can lead to blindness.
Further, EcSOD also may prove beneficial against multi-organ dysfunction syndrome, in which multiple organs begin to fail. Efforts to treat the condition with general antioxidants have been unsuccessful, but Yan suggests that understanding EcSOD’s workings may let doctors use it in a more targeted – and hopefully more effective – fashion.