
New insights into the architecture of the brain have been revealed by scientists at the Wellcome Sanger Institute, the Wellcome-MRC Cambridge Stem Cell Institute and their collaborators. The researchers discovered that cells in the cerebral cortex of mice, called astrocytes, are more diverse than previously thought, with distinct layers of astrocytes across the cerebral cortex that provide the strongest evidence to date of their specialization across the brain.
Published on 16 March in Nature Neuroscience, the most in-depth study of its kind is set to change the way we think about the brain and the role of cells such as astrocytes. This knowledge will have with implications for the study of neurological disabilities, such as Alzheimer’s, multiple sclerosis and autism.
In the past 20 years, research has shown glial cells to be key players in brain development and function, as well as promising targets for better understanding neurological disorders. Alzheimer’s causes around two thirds of dementia cases in the UK, which affects around 850,000 individuals at present. MS is a neurological disorder that affects the central nervous system and impacts around 100,000 people in the UK. Autism affects around one in every hundred people in the UK.
Despite the wealth of knowledge on neuronal function and the organisation of neurons into layers, prior to this study there had been little investigation into whether glial cells across different layers showed different cellular properties. To answer this question, the researchers developed a new methodological approach to provide a more detailed view of the organisation of astrocytes than ever before.
The team discovered that astrocytes are not uniform as previously thought, but take distinct molecular forms depending on their location in the cerebral cortex. They found that astrocytes are also organised into multiple layers, but that the boundaries of astrocyte layers are not identical to the neuronal layers. Instead, astrocyte layers have less sharply defined edges and overlap the neuronal layers.